Goto

Collaborating Authors

 Aluminum


DeepOFormer: Deep Operator Learning with Domain-informed Features for Fatigue Life Prediction

arXiv.org Artificial Intelligence

Fatigue life characterizes the duration a material can function before failure under specific environmental conditions, and is traditionally assessed using stress-life (S-N) curves. While machine learning and deep learning offer promising results for fatigue life prediction, they face the overfitting challenge because of the small size of fatigue experimental data in specific materials. To address this challenge, we propose, DeepOFormer, by formulating S-N curve prediction as an operator learning problem. DeepOFormer improves the deep operator learning framework with a transformer-based encoder and a mean L2 relative error loss function. We also consider Stussi, Weibull, and Pascual and Meeker (PM) features as domain-informed features. These features are motivated by empirical fatigue models. To evaluate the performance of our DeepOFormer, we compare it with different deep learning models and XGBoost on a dataset with 54 S-N curves of aluminum alloys. With seven different aluminum alloys selected for testing, our DeepOFormer achieves an R2 of 0.9515, a mean absolute error of 0.2080, and a mean relative error of 0.5077, significantly outperforming state-of-the-art deep/machine learning methods including DeepONet, TabTransformer, and XGBoost, etc. The results highlight that our Deep0Former integrating with domain-informed features substantially improves prediction accuracy and generalization capabilities for fatigue life prediction in aluminum alloys.


PGNAA Spectral Classification of Aluminium and Copper Alloys with Machine Learning

arXiv.org Artificial Intelligence

In this paper, we explore the optimization of metal recycling with a focus on real-time differentiation between alloys of copper and aluminium. Spectral data, obtained through Prompt Gamma Neutron Activation Analysis (PGNAA), is utilized for classification. The study compares data from two detectors, cerium bromide (CeBr$_{3}$) and high purity germanium (HPGe), considering their energy resolution and sensitivity. We test various data generation, preprocessing, and classification methods, with Maximum Likelihood Classifier (MLC) and Conditional Variational Autoencoder (CVAE) yielding the best results. The study also highlights the impact of different detector types on classification accuracy, with CeBr$_{3}$ excelling in short measurement times and HPGe performing better in longer durations. The findings suggest the importance of selecting the appropriate detector and methodology based on specific application requirements.


Supervised Machine Learning and Physics based Machine Learning approach for prediction of peak temperature distribution in Additive Friction Stir Deposition of Aluminium Alloy

arXiv.org Machine Learning

Additive friction stir deposition (AFSD) is a novel solid-state additive manufacturing technique that circumvents issues of porosity, cracking, and properties anisotropy that plague traditional powder bed fusion and directed energy deposition approaches. However, correlations between process parameters, thermal profiles, and resulting microstructure in AFSD remain poorly understood. This hinders process optimization for properties. This work employs a framework combining supervised machine learning (SML) and physics-informed neural networks (PINNs) to predict peak temperature distribution in AFSD from process parameters. Eight regression algorithms were implemented for SML modeling, while four PINNs leveraged governing equations for transport, wave propagation, heat transfer, and quantum mechanics. Across multiple statistical measures, ensemble techniques like gradient boosting proved superior for SML, with lowest MSE of 165.78. The integrated ML approach was also applied to classify deposition quality from process factors, with logistic regression delivering robust accuracy. By fusing data-driven learning and fundamental physics, this dual methodology provides comprehensive insights into tailoring microstructure through thermal management in AFSD. The work demonstrates the power of bridging statistical and physics-based modeling for elucidating AM process-property relationships.


A comparison between Recurrent Neural Networks and classical machine learning approaches In Laser induced breakdown spectroscopy

arXiv.org Artificial Intelligence

Recurrent Neural Networks are classes of Artificial Neural Networks that establish connections between different nodes form a directed or undirected graph for temporal dynamical analysis. In this research, the laser induced breakdown spectroscopy (LIBS) technique is used for quantitative analysis of aluminum alloys by different Recurrent Neural Network (RNN) architecture. The fundamental harmonic (1064 nm) of a nanosecond Nd:YAG laser pulse is employed to generate the LIBS plasma for the prediction of constituent concentrations of the aluminum standard samples. Here, Recurrent Neural Networks based on different networks, such as Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (Simple RNN), and as well as Recurrent Convolutional Networks comprising of Conv-SimpleRNN, Conv-LSTM and Conv-GRU are utilized for concentration prediction. Then a comparison is performed among prediction by classical machine learning methods of support vector regressor (SVR), the Multi Layer Perceptron (MLP), Decision Tree algorithm, Gradient Boosting Regression (GBR), Random Forest Regression (RFR), Linear Regression, and k-Nearest Neighbor (KNN) algorithm. Results showed that the machine learning tools based on Convolutional Recurrent Networks had the best efficiencies in prediction of the most of the elements among other multivariate methods.


Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading

arXiv.org Artificial Intelligence

Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. The mechanical properties of interpenetrating phase composites (IPCs), especially response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young's modulus of 2.7, wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model. To obtain FEA results of IPC properties, 5,000 random time-dependent strain loads generated by a Gaussian process kennel are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98%. Also, the learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably well accuracy.


A novel corrective-source term approach to modeling unknown physics in aluminum extraction process

arXiv.org Artificial Intelligence

With the ever-increasing availability of data, there has been an explosion of interest in applying modern machine learning methods to fields such as modeling and control. However, despite the flexibility and surprising accuracy of such black-box models, it remains difficult to trust them. Recent efforts to combine the two approaches aim to develop flexible models that nonetheless generalize well; a paradigm we call Hybrid Analysis and modeling (HAM). In this work we investigate the Corrective Source Term Approach (CoSTA), which uses a data-driven model to correct a misspecified physics-based model. This enables us to develop models that make accurate predictions even when the underlying physics of the problem is not well understood. We apply CoSTA to model the Hall-H\'eroult process in an aluminum electrolysis cell. We demonstrate that the method improves both accuracy and predictive stability, yielding an overall more trustworthy model.


PGNAA Spectral Classification of Metal with Density Estimations

arXiv.org Artificial Intelligence

For environmental, sustainable economic and political reasons, recycling processes are becoming increasingly important, aiming at a much higher use of secondary raw materials. Currently, for the copper and aluminium industries, no method for the non-destructive online analysis of heterogeneous materials are available. The Prompt Gamma Neutron Activation Analysis (PGNAA) has the potential to overcome this challenge. A difficulty when using PGNAA for online classification arises from the small amount of noisy data, due to short-term measurements. In this case, classical evaluation methods using detailed peak by peak analysis fail. Therefore, we propose to view spectral data as probability distributions. Then, we can classify material using maximum log-likelihood with respect to kernel density estimation and use discrete sampling to optimize hyperparameters. For measurements of pure aluminium alloys we achieve near perfect classification of aluminium alloys under 0.25 second.


Sparse deep neural networks for modeling aluminum electrolysis dynamics

arXiv.org Artificial Intelligence

Deep neural networks have become very popular in modeling complex nonlinear processes due to their extraordinary ability to fit arbitrary nonlinear functions from data with minimal expert intervention. However, they are almost always overparameterized and challenging to interpret due to their internal complexity. Furthermore, the optimization process to find the learned model parameters can be unstable due to the process getting stuck in local minima. In this work, we demonstrate the value of sparse regularization techniques to significantly reduce the model complexity. We demonstrate this for the case of an aluminium extraction process, which is highly nonlinear system with many interrelated subprocesses. We trained a densely connected deep neural network to model the process and then compared the effects of sparsity promoting l1 regularization on generalizability, interpretability, and training stability. We found that the regularization significantly reduces model complexity compared to a corresponding dense neural network. We argue that this makes the model more interpretable, and show that training an ensemble of sparse neural networks with different parameter initializations often converges to similar model structures with similar learned input features. Furthermore, the empirical study shows that the resulting sparse models generalize better from small training sets than their dense counterparts.


Artificial Intelligence used to create new aluminum alloys – IAM Network

#artificialintelligence

Scientists in Japan have developed a machine learning approach that predicts the elements and manufacturing processes needed to obtain an aluminum alloy with specific, desired mechanical properties. The approach, published in the journal Science and Technology of Advanced Materials, could facilitate the discovery of new materials.Aluminum alloys contain elements such as magnesium, manganese, silicon, zinc, and copper. The combination of these elements and the manufacturing process determines how resilient the alloys are to various stresses. For example, 5000 series aluminum alloys contain magnesium and several other elements and are used as a welding material in buildings, cars, and pressurized vessels. The 7000 series aluminum alloys, which contain zinc and usually magnesium and copper, are most commonly used in bicycle frames.Experimenting with various combinations of elements and manufacturing processes to fabricate aluminum alloys is time-consuming and expensive.


GE ties up with IIT-M to set up Industrial Internet Centre

#artificialintelligence

US-based conglomerate GE has signed an agreement with the Indian Institute of Technology, Madras (IIT Madras), to set up an Industrial Internet Centre of Excellence. The Centre is being designed to develop applications that will help companies save costs. The first of these will be the Digital Twin of an aluminium smelter. According to senior company officials, GE would invest around Rs 3 crore in the first six months and could commit around Rs 30 crore over five years depending upon the outcome. Aluminium smelters are refineries for extracting the metal from aluminium oxide, separating it from oxygen through a chemical reaction.